skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Silwal, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We use in situ measurements from the first 19 encounters of Parker Solar Probe and the most recent five encounters of Solar Orbiter to study the evolution of the turbulent sonic Mach numberMt(the ratio of the amplitude of velocity fluctuations to the sound speed) with radial distance and its relationship to density fluctuations. We focus on the near-Sun region with radial distances ranging from about 11 to 80R. Our results show that (1) the turbulent sonic Mach numberMtgradually moves toward larger values as it approaches the Sun, until at least 11R, whereMtis much larger than the previously observed value of 0.1 at and above 0.3 au; (2) transonic turbulence withMt ∼ 1 is observed in situ for the first time and is found mostly near the Alfvén critical surface; (3) Alfvén Mach number of the bulk flowMAshows a strong correlation with the plasma beta, indicating that most of the observed sub-Alfvénic intervals correspond to a low-beta plasma; (4) the scaling relation between density fluctuations andMtgradually changes from a linear scaling at larger radial distances to a quadratic scaling at smaller radial distances; and (5) transonic turbulence is more compressible than subsonic turbulence, with enhanced density fluctuations and slightly flatter spectra than subsonic turbulence. A systematic understanding of compressible turbulence near the Sun is necessary for future solar wind modeling efforts. 
    more » « less